Converged GW quasiparticle energies for transition metal oxide perovskites
نویسندگان
چکیده
The ab initio calculation of quasiparticle (QP) energies is a technically and computationally challenging problem. In condensed matter physics the most widely used approach to determine QP energies is the GW approximation. Although the GW method has been widely applied to many typical semiconductors and insulators, its application to more complex compounds such as transition metal oxide perovskites has been comparatively rare, and its proper use is not well established from a technical point of view. In this work, we have applied the single-shot G0W0 method to a representative set of transition metal oxide perovskites including 3d (SrTiO3, LaScO3, SrMnO3, LaTiO3, LaVO3, LaCrO3, LaMnO3, and LaFeO3), 4d (SrZrO3, SrTcO3, and Ca2RuO4) and 5d (SrHfO3, KTaO3 and NaOsO3) compounds with different electronic configurations, magnetic orderings, structural characteristics and bandgaps ranging from 0.1 to 6.1 eV. We discuss the proper procedure to obtain well converged QP energies and accurate bandgaps within single-shot G0W0, and highlight the difference between the adoption of norm-conserving and ultrasoft potentials in GW calculations. A minimal statistical analysis indicates that the correlation of the GW data with the DFT gap is more robust than the correlation with the experimental gaps; moreover we identify the static dielectric constant as alternative useful parameter for the approximation of GW gap in high-throughput automatic procedures. Finally, we compute the QP band structure and optical spectra within the random phase approximation and compare the results with available experimental data.
منابع مشابه
Ground State Properties and Optical Conductivity of the Transition Metal Oxide Sr2VO4
Combining first-principles calculations with a technique for many-body problems, we investigate properties of the transition metal oxide Sr2VO4 from the microscopic point of view. By using the local density approximation (LDA), the high-energy band structure is obtained, while screened Coulomb interactions are derived from the constrained LDA and the GW method. The renormalization of the kineti...
متن کاملHigh-pressure / High-temperature Synthesis of Transition Metal Oxide Perovskites
Perovskite and related Ruddlesden-Popper type transition metal oxides synthesised at high pressures and temperatures during the last decade are reviewed. More than 60 such new materials have been reported since 1995. Important developments have included perovskites with complex cation orderings on A and B sites, multiferroic bismuth-based perovskites, and new manganites showing colossal magneto...
متن کاملPhotoelectron properties of DNA and RNA bases from many-body perturbation theory
The photoelectron properties of DNA and RNA bases are studied using many-body perturbation theory within the GW approximation, together with a recently developed Lanczos-chain approach. Calculated vertical ionization potentials, electron affinities, and total density of states are in good agreement with experimental values and photoemission spectra. The convergence benchmark demonstrates the im...
متن کاملFirst principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes.
The positions of electronic band edges are one important metric for determining a material's capability to function in a solar energy conversion device that produces fuels from sunlight. In particular, the position of the valence band maximum (conduction band minimum) must lie lower (higher) in energy than the oxidation (reduction) reaction free energy in order for these reactions to be thermod...
متن کاملInvestigation of effect of magnetic ordering on structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) using ab initio method
Structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) were studied for each of three magnetic configurations nonmagnetic, ferromagnetic, and antiferromagnetic by using density functional theory in generalized gradient approximations (GGA) and strong correlation correction (GGA + U). Due to magnetic transition from antiferromagnetic to nonmagnetic phase, an electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017